
Summer Internship Project

Report

Unsupervised Shape Recovery from 2D

images applied to plastic packaging

Submitted by

Ayoub EL HOUDRI

CY Tech

Under the guidance of

Dr. Katharina Eissing

Department of Research and Development

Digimind GmbH
Bismarckstraße 10-12

10625 Berlin

Summer Internship 2021

Department of Mathematics &
Computer Science

CY Tech

Name of the guide
Prof. Pierre Plancoulaine

Date: August 20, 2021

Abstract

Included in this paper are accounts of my internship as a Data Scientist Intern
undertaken in Digimind Labs in Berlin in the fulfillment of my first year of
engineering studies at CY Tech. I was in charge of Shape reconstruction
of plastic packaging using Computer Vision & Machine Learning methods as
well as generating synthetic data using some of mesh and CAD manipulation
libraries using Python as the main programming language, with emphasis
placed on plastic bottles. The internship at Digimind Labs provided me
with the opportunity to work with different people coming from different
fields within the team. Further work at Digimind Labs included research in
the field of Computer Vision especially in Shape Reconstructed AI based,
presenting my recommendations for some algorithms improvement for better
shape reconstruction from 2D images, and then implementing those ideas.

Contents

1 Objective 1

2 Introduction 2

3 The Startup: Digimind Labs 3
3.1 Introduction of Company . 3

3.1.1 Activity field and goals 3
3.1.2 Overview of Digimind’s activity 4

3.2 Motivation behind choosing Digimind for internship 6
3.2.1 Career plan . 6
3.2.2 Teamwork . 6
3.2.3 Internship abroad . 7

4 Work Done 8
4.1 Pixel2Mesh Algorithm . 8

4.1.1 Data and preprocessing 8
4.1.2 Pixel2Mesh result . 12

4.2 Pygalmesh . 15
4.2.1 Pygalmesh library . 15
4.2.2 Implementation and results 15

4.3 CADQuery Library . 19
4.3.1 Why CADQuery ? . 19
4.3.2 Implementation and results 20
4.3.3 Construction blocks . 23

5 Future Work 35
5.1 Generating Data . 35

5.1.1 Synthetic Data based on parametric design 35
5.2 Training Pixel2Mesh . 35

5.2.1 Training set . 35
5.2.2 Training the model using AWS ML 36

i

6 Conclusion 37

Acknowledgements 38

References 39

ii

Chapter 1

Objective

The main objective of this internship project is to generate detailed 3D bot-
tles from a single view 2D images. To accomplish this task the most used
algorithms are AI based: using Graph Convolutional Neural Networks known
in field as GCNNs. So as to do that, at first, we had to chose the most effi-
cient model in term of high quality shape reconstruction from several models
appearing in some research papers. After that we had to evaluate the pre-
trained model’s complexity and results using images of bottles scrapped from
the web and preprocessed to be a ready-to-use input.

To improve the output shapes we focused on training the model on plastic
bottles only instead of using the available pre-trained model which is trained
not only on bottles but also on large categories of objects from ShapeNet [1]
data set such as planes, cars, guns and many other shapes.

Besides to gaining a first professional experience, I was looking forward to
improve my soft skills, to discover the teamwork culture, and to try a new
experience of working abroad, in a technologically advanced country such as
Germany.

1

Chapter 2

Introduction

In this report, I underline the several missions and problems I had to deal
with during my internship at Digimind Labs. I will also talk about my mo-
tivation behind doing this internship and the reasons which pushed me to
choose Digimind Labs to carry out my internship project.

In what comes, first of all, I will introduce the company and its field of ac-
tivity, my career plan, and my work experience being in a team in a foreign
company. Second of all, I will mention the technical work I had to achieve
including all the algorithms and libraries used for that. Finally, I will indi-
cate the future work ranging from generating data to training the algorithm.

At the end, I will present a conclusion as an overview of the technical and
nontechnical skills I developed during my internship at Digimind Labs.

2

Chapter 3

The Startup: Digimind Labs

3.1 Introduction of Company

3.1.1 Activity field and goals

Digimind [2] is a startup based in Berlin, founded by Dr. Omar Fergani and
Dr. Katharina Eissing in 2018. The company is developing an End-to-end
AI platform to accelerate packaging innovation, considered the first company
introducing a SaaS tool dedicated to the packaging industry. Its goal is to
enable the transition of the packaging from a linear to a fully circular econ-
omy by 2025 and achieving this will be with leveraging Digimind’s in-house
AI software and material libraries, reducing material usage, increasing reuse
potential, and enabling recyclability by design.

Through its platform Digimind Labs provides many services to its customers,
like the following:

1. Analysis & Specification: Digimind supports customer at the start of
its journey by analyzing his product and its life-cycle to gain all the
necessary specifications. The specifications are translated into detailed
engineering requirements for the product and manufacturing process.
The requirements are specified to meet the high demands set by pro-
duction, filling, transportation and handling as well as his production
capacities.

2. Digitalization of the product: To help the customer to leverage the full
power of Digimind Toolbox, the company digitalizes the product and
performs using its computer topography technology.

3

3. AI Design & Light-weighting: Whether the costumer is looking for a
completely new design or for the optimization of his existing design to
make it more sustainable and cost saving while fulfilling all his perfor-
mance requirements, Digimind can take this in hand.

4. Customer specific AI algorithm: Joined development for the customer’s
specific material based AI algorithm or a new machine learning model
for his specific type of packaging.

5. Design testing & Verification: To ensure the customer’s new or op-
timized design meets all the requirements set by production, filling,
transportation and handling and his production capacities, Digimind
tests and verifies the product performance with its GreenDigitalTwin
technology. They also work with the customer in producing and testing
a prototype before mass production.

6. Sustainability & Cost insights: With Digimind’s ISO 14040/44 Life Cy-
cle Assessment service, the insights needed on products environmental
performance throughout its entire life-cycle are given to the customer.
A Cost Insights Report provides him with an immediate overview of
the cost savings achieved with new or optimized designs.

3.1.2 Overview of Digimind’s activity

I present in Figure 1 an overview of the chain developed by Digimind and
used to perform high quality pre-manufacturing tasks through its end-to-end
platform.

4

Figure 1: Overview of Digimind’s design chain

The following Figure 2 shows how Digimind reduces the environmental im-
pact by reducing the carbon footprint.

Figure 2: Environmental impact reduction by Digimind

5

3.2 Motivation behind choosing Digimind for

internship

3.2.1 Career plan

My choice of Mathematics & Computer Science branch in the second semester
of my first year of engineering at CY Tech [3] justifies my desire to become a
Data Scientist. I acquired a lot of knowledge in the field at school and during
this 3 months internship within the Digimind team.

For any kind of technical role, including data science, there are two paths:
the management path and the individual contributor path.

The individual contributor path includes data scientists who work on core
projects, contribute code, run analyses, and build ETL pipelines and ma-
chine learning models. The management path encompasses data scientists
who manage people, scale data strategy, and work on fitting the pieces of a
data organization together.

Both paths originate from the same journey from entry-level to the senior
data scientist position, where they then diverge. As career advancement
continues, individual contributors can decide to become managers or remain
highly specialized data scientists.

When it comes to my future choice, I found that being a data scientist
manager suits me the most. Through my internship I developed tasks or-
ganization skills, communication skills, problems solving and hacking skills,
which pushed me to be interested not only on the technical side of the job
but also team management.

Digimind gave me a big opportunity to discover the job of data scientist and
provided me with a large knowledge and tips to be successful in my future
career.

3.2.2 Teamwork

As a data scientist intern at Digimind, I was in the R&D team focusing
more on research. I had the opportunity to meet interns like me from all
over the world coming from different backgrounds and fields of study such
as: Computer Science, Mechanical Engineering, and Mathematical Modeling.

6

I’m very grateful to work in a heavy-weight team such as Digimind. Team-
work culture was omnipresent and mutual aid was ubiquitous: I learned a lot
and helped a lot. I liked the possibility of collaboration between teams from
the other departments such as business department, communication depart-
ment and R&D department.

3.2.3 Internship abroad

Being a member of the Digimind team for 3 months was one of my greatest
experiences. Digimind took the initiative by inviting all the team to Berlin
to work face to face instead of keeping working fully remote.

I had the chance to meet directly with my colleagues. We had a great expe-
rience during our stay in Berlin.

Travelling to Germany, as a part of my internship, made me want to discover
the startup’s culture in other regions of the world. And I will be glad to
retry the same experience abroad in other countries.

7

Chapter 4

Work Done

4.1 Pixel2Mesh Algorithm

4.1.1 Data and preprocessing

As a first step, I started testing Pixel2Mesh Implementation available on
GitHub [4] that came with a research paper untitled Pixel2Mesh: Gener-
ating 3D Mesh Models from Single RGB Images [5] , appeared in 2016. To
achieve this task I needed at first one image of a bottle to be used as an input.

I scrapped some images using python BeautifulSoup library [6] for web scrap-
ping. As a result I created my own data set of images of bottles that can be
fed to the algorithm after being preprocessed.

From all the gathered images, I have chosen three images from the initial data
set and the second step was preprocessing these images by resizing them and
applying some filters on them such as: gray-scale filter and Gaussian blur
filter for noise removal as well as reducing memory consumption.

The main used library for the preprocessing implementation is OpenCV [7],
which contains ready-to-use functions for image processing. Below is the
preprocessing code with all the function filters cited before as well as some
functions for image reading and result plotting.

8

The following script is used to import some libraries and to define loadIm-
ages function to read the initial images from their paths.

1 import os

2 import numpy as np

3 import matplotlib.pyplot as plt

4 import matplotlib.image as mpimg

5 import cv2

6

7 image_path = "/home/cytech/Desktop"

8

9 def loadImages(path):

10 image_files = sorted ([os.path.join(path , ’bottles ’, file)

for file in os.listdir(path + "/bottles") if file.

endswith(’.png’)])

11 return image_files

The next script is defining two functions display one and display to plot
the image before and after processing it.

1 # Display one image

2 def display_one(a, title1 = "Original"):

3 plt.imshow(a), plt.title(title1)

4 plt.xticks ([]), plt.yticks ([])

5 plt.show()

6

7 # Display two images

8 def display(a, b, title1 = "Original", title2 = "Edited"):

9 plt.subplot (121), plt.imshow(a), plt.title(title1)

10 plt.xticks ([]), plt.yticks ([])

11 plt.subplot (122), plt.imshow(b), plt.title(title2)

12 plt.xticks ([]), plt.yticks ([])

13 plt.show()

This part of the code is the main function of processing, it contains 3
steps: resizing, gray-scaling and blurring, it will be applied on a sample of
three images from the data set.

1 def processing(data):

2

3 # Loading image and getting 3 images from the data set to

work with

4 img = [cv2.imread(i, cv2.IMREAD_UNCHANGED) for i in data

[:3]]

5 print(’Original size’, img [0]. shape)

6

9

7 # Setting dim of the resize = (255 ,255)

8 height = 220

9 width = 220

10 dim = (width , height)

11 res_img = []

12 for i in range(len(img)):

13 res = cv2.resize(img[i], dim , interpolation=cv2.

INTER_LINEAR)

14 res_img.append(res) # res is the resized image

15

16 # Gray -scaling filter

17 gray_scale = []

18 for i in range(len(res_img)):

19 gray = cv2.cvtColor(res_img[i], cv2.COLOR_BGR2GRAY)

20 gray_scale.append(gray) # gray is the gray scaled image

21

22 # GaussianBlur filter (noise removal)

23 no_noise = []

24 for i in range(len(gray_scale)):

25 blur = cv2.GaussianBlur(gray_scale[i], (5, 5), 0)

26 no_noise.append(blur) # blur is the new image without

noise

27

28 # Display the original and the edited images

29 for i in range (3):

30 display (img[i], no_noise[i])

The last part is defining main as a function to run processing and to plot
the Original and Edited images.

1 def main():

2

3 # Calling global variable

4 global image_path

5 dataset = loadImages(image_path)

6 print("List of files the first 3 in the folder :\n",

dataset [:3])

7 # sending all the images to pre -processing

8 pro = processing(dataset)

9

10 main()

Below are the output with each input of the preprocessing script above.

10

11

4.1.2 Pixel2Mesh result

The official implementation of Pixel2Mesh is available on GitHub [4] where
the provided input is the preprocessed image of bottle. Here are some 3D
shapes generated by the algorithm after giving it the edited images above in
same order.

Figure 3: Original image - Edited input - 3D shape

12

Figure 4: Original image - Edited input - 3D shape

13

Figure 5: Original image - Edited input - 3D shape

We notice that the results are missing details. This is due to the pre-trained
model which is normally trained on various categories of objects other than
bottles, so to accomplish this task of reconstructing the 3D shape with more
details and features, it is necessary to train the algorithm only on a large
data set of bottle images and their 3D shapes, to make it adapted to bottles
only.

So our goal now is to generate data in 3D form of bottles and use it to train
the algorithm instead of using a pre-trained model. That is what we will see
next.

14

4.2 Pygalmesh

4.2.1 Pygalmesh library

Pygalmesh [8] is a Python front-end to CGAL’s 2D and 3D mesh generation
capabilities. Pygalmesh makes it easy to create high-quality 2D, 3D volume
meshes, periodic volume meshes, and surface meshes. We will use it to gen-
erate the 3D shape of bottles with rotational symmetry, using the function
RingExtrude.

The reconstruction is done through 3 steps: contour coordinates extraction,
data reduction and finally revolving the 2D polygon (contour) 360 degrees
around the central axis. In the next section, I present the initial image as
well as the scripts for each step and their output.

4.2.2 Implementation and results

Figure 6: Initial image

• Step 1: Contour extraction

1 import cv2 # Import OpenCV

2 import numpy as np # Import NumPy

3 import statistics # Import Statstics to use built -in

avergae funtion

4 import pygalmesh # Import Pygalmesh

5 import matplotlib.pyplot as plt #Import Pyplot to plot

the contour

6

15

7 # Read the image as grayscale

8 im = cv2.imread(’CADQuery_Target -removebg -preview.png’,

0)

9

10 # Run findContours

11 # Also , we want to find the best contour possible with

CHAIN_APPROX_NONE

12 contours , hierarchy = cv2.findContours(im.copy(), cv2.

RETR_EXTERNAL , cv2.CHAIN_APPROX_NONE)

13

14 # Create an output of all zeroes that has the same shape

as the input

15 # image

16 out = np.zeros_like(im)

17

18 # On this output , draw all of the contours that we have

detected

19 # in white , and set the thickness to be 3 pixels

20 cv2.drawContours(out , contours , -1, 255, 3)

21

22 # Save the contour output

23 cv2.imwrite(’bottle_edge.png’,out)

24

25 #0.01 for normalization , to avoid having far points

26 #the i%10 to reduce the number of points: we take 112

points to reduce memory consumption

27 contours0 = [[c[0][0]*0.1 ,c[0][1]*0.1] for i,c in

enumerate(contours [0]) if i%10==0]

28 contour0 #Normalized coordinates of the contour

Figure 7: Extracted contour

16

• Step 2: Data reduction

1 #X, Z are the sets of the contour ’s coordinates

2 X=[c[0] for c in contours0]

3 Z=[c[1] for c in contours0]

4

5 #We substract the mean of the x-coordianates from x-

coordiantes , to center the bottle on the Z-axis

6 avg=statistics.mean(X)

7 X=list(X-avg)

8

9 contours1 =[[X[i],Z[i]] for i in range(len(X))]

10

11 #In order to optimize the memory consumption we use just

the points having a positive x-coordinates

12 #(half the bottle)

13 contours_final =[]

14

15 for c in contours1:

16 if c[0] >=0:

17 contours_final.append(c)

18

19 #We plot the points to make sure that we deal only with

half the bottle

20 X=[c[0] for c in contours_final]

21 Z=[c[1] for c in contours_final]

22

23 plt.plot(X, Z, ’o’, color=’black’)

Figure 8: Before reducing the contour coordinates

17

Figure 9: After reducing the contour coordinates

• Step 3: Shape reconstruction

1 p = pygalmesh.Polygon2D(contours_final)

2

3 max_edge_size_at_feature_edges = 0.1

4

5 domain = pygalmesh.RingExtrude(p,

max_edge_size_at_feature_edges)

6

7 mesh = pygalmesh.generate_mesh(

8 domain ,

9 max_cell_circumradius =0.1,

10 max_edge_size_at_feature_edges=

max_edge_size_at_feature_edges ,

11 verbose=False ,

12)

13

14 mesh.write("my_sweet_bottle.vtk")

18

Figure 10: Final 3D shape

Applying this method to reconstruct the 3D shape of rotational symmetric
bottles will help us in making a data set of this type of bottles and use them
to train Pixel2Mesh algorithm.

4.3 CADQuery Library

4.3.1 Why CADQuery ?

CadQuery [9] is an intuitive, easy-to-use Python library for building para-
metric 3D CAD models. It has several goals:

• Build models with scripts that are as close as possible to how you would
describe the object to a human, using a standard, already established
programming language.

• Create parametric models that can be very easily customized by end
users.

• Output high quality CAD formats like STEP and AMF in addition to
traditional STL.

19

• Provide a non-proprietary, plain text model format that can be edited
and executed with only a web browser.

• Unlike Pygalmesh library (seen in the section before), CADQuery can
generate 3D shapes of rectangular bottles as well as bottles without
rotational symmetry.

4.3.2 Implementation and results

The following implementation was used to create a parameterized 3D shape
of a bottle having the most general shape possible. In what follows I will
present the code as well as its result after varying some parameters.

1 import cadquery as cq

2

3 #upper_part + bottom_part

4 def bottle(distZ , distX , bandlengh , bandwidth , boxlengh ,

boxwidth , boxheight):

5

6 s = cq.Workplane("ZX")

7

8 sPnts = [

9 (distZ*4,distX),

10 (distZ *2,2* distX +0.1) ,

11 (0,distX *3)

12]

13

14 r = s.lineTo(distZ *5,0).lineTo(distZ*5,distX).lineTo(

distZ *4+0.01 , distX)

15 r = r.spline(sPnts ,includeCurrent=True).close ()

16

17 result=r.revolve(axisStart =(0 ,0), axisEnd =(1 ,0),clean=

True)

18 result = result.faces(">Z").shell (0.05)

19 global upperpart

20 upperpart=result.translate ((0,0 ,2*(boxheight + bandlengh)

-0.4))

21

22 #bottompart1

23 s = cq.Workplane("XY").box(boxlengh , boxwidth , boxheight

).edges("|Z").fillet(boxlengh // 2)

24 #bottompart2

25 q=s.faces(">Z").workplane(centerOption="CenterOfMass").

circle(bandwidth /2).extrude(bandlengh + .3,True)

26 #bottompart3:

27 q=q.faces(">Z").workplane(centerOption="CenterOfMass").

box(boxlengh , boxwidth , boxheight + .6).edges("|Z").fillet

20

(boxlengh // 2)

28 #bottompart4:

29 q=q.faces(">Z").workplane(centerOption="CenterOfMass").

circle(bandwidth /2).extrude(bandlengh ,True)

30 #bottompart5:

31 q=q.faces(">Z").workplane(centerOption="CenterOfMass").

box(boxlengh , boxwidth , boxheight).edges("|Z").fillet(

boxlengh // 2)

32 q=q.faces("<Z").fillet (0.5)

33 global bottompart

34 bottompart=q.faces(">Z").shell (0.05)

35

36 return upperpart , bottompart

37

38 bottle (0.5, 0.5, 3, 1.2*2, 3, 3, 2.4)

The script above gives the following result.

Figure 11: Output (view 1)

21

Figure 12: Output (view 2)

Figure 13: Output (view 3)

22

4.3.3 Construction blocks

The CADQuery bottle is made from two parts: the upper-part which is the
curvy part with the cap at the top, and the bottom-part which is the cylin-
drical. In the following, I will explain how the two parts of the parameterized
bottle are made and define each parameter and how its variation changes the
form of the bottle.

• Upper-part

As a first step, I have set a workplane that should be following 2 axes
placed in order: Z and X, and then the plan is named s as we see in
line 6. This plan will serve as a basis for building blocks one on top of
the other until the construction of the entire bottle, part by part which
will be explained with more details after.

As a second step, line 8, sPnts contains all the coordinates of 3 points in
the workplane (the 2D plan ZX), the first coordinate is following the Z
axis and the second is following the X axis (that’s why the order of the
axes while defining the workplane is important): the parameters which
intervene here are distZ and distX multiplied afterwards by coefficients
like 4,2 and 3. distZ represents a distance along the Z axis and distX
a distance along the X axis the coefficients only allow to have a larger
shape of the upper-part: The multiplication by coefficients is linear and
does not affect the shape, they could be even deleted since distZ and
distX are local variables.

Plotting r in line 15 after using the spline function gives the result in
the next page.

The spline function interpolates the 3 points, and the close function
closes the spline. The next result is given after setting the parameters
distZ and distX to 0.5.

23

Figure 14: sPnts plot with distZ=0.5, distX=0.5

The revolve function is used after that on this 2D sketch, and takes as
variables axisstart and axisend, to make sure that the rotation will be
around the Z axis, and takes also a boolean variable: clean set to True,
to clean the 2D sketch. As a result we get the following.

24

Figure 14: Upper-part with distZ=0.5, distX=0.5 (view 1)

25

Figure 15: Upper-part with distZ=0.5, distX=0.5 (view 2)

I applied a shell function to this part with a thickness = 0.05, starting
from the upper face (faces (“>Z”) in line 18) to the bottom face, cre-
ating the bottle’s wall by emptying the inside of the shape above. And
gives the next result.

26

Figure 16: Upper-part after applying shell function with distZ=0.5,
distX=0.5

27

Below, we find the results for other values of the parameters distZ and
distX.

Figure 17: Upper-part after applying shell function with distZ=0.8,
distX=0.5

28

Figure 18: Upper-part after applying shell function with distZ=0.5,
distX=0.8

In line 20 appears the translate function which is for assembly. It will
be discussed in detail later.

• Bottom-part

The bottom-part of the bottle is made of 5 blocks, starting from the
bottom to the top.

Part 1

A workplane is defined first in line 23, which is XY this time. On
this plan I build a box using a box function which takes the variables
boxlengh, boxwidth, and boxheight.

The curvy feature of the box’s edges along the Z axis is made through
the class function fillet which takes as a parameter the value boxlengh//2
which defines the radius of “the curvy box” (fillet (0) makes no changes).

29

Part 2

In line 25, I made an extruded circle with a radius = bandwidth /
2. s.faces(“>Z”) which means that the circle is built on the upper-
face (along the Z axis) of the box (Part1). In this step, workplane
(centerOption = ”CenterOfMass”) defines a new workplane set to the
upper-face of the box (Part1) and means that the circle will have as
center the center of mass of the upper face of the box. The next step is
extruding the circle by a distance = bandlengh + 0.3 to make a cylin-
dre, where 0.3 is a correction value: I had to add it because I noticed
that both bands don’t have the same height even by using the same
bandlengh value for both of them.

Part 3

This part is a box as well, and constructed the same way as the Part1.
The difference is that it’s built on the circle (Part2) by defining a new
workplane as it’s done in the part before.

0.6 is added to the boxheight, because the box in the middle is sup-
posed to be longer than the others at the end with a length of 0.6 more.

Part 4

This part is made the same way as the circle (Part2), it is built on the
box (Part3).

Part 5

This is the ending box: made the same way as the starting box (Part1),
with exactly the same proportions.

Curvy feature of the bottle’s bottom and shell

To add the curvy feature to the final shape, I used fillet function with a
value of 0.5 (fillet (0) keeps the bottom rectangular). And faces (“<Z”)
means that the feature is added at the bottom of the bottle oriented
along the Z axis from the start.

Here is the result after making all the parts and the features mentioned
before.

30

Figure 19: Bottom-part with bandlengh=1.8, bandwidth=3,
boxlengh=3, boxwidth=3, boxheight=2.4 (view 1)

31

Figure 19: Bottom-part with bandlengh=1.8, bandwidth=3,
boxlengh=3, boxwidth=3, boxheight=2.4 (view 2)

32

After applying the same shell function explained for the upper-part, we
get the following result.

Figure 19: Bottom-part after applying shell function with
bandlengh=1.8, bandwidth=3, boxlengh=3, boxwidth=3,

boxheight=2.4

33

Translate function, used in line 20 translates the upper-part follow-
ing the Z axis with a distance = the height of all the bottom-part.
As a result the upper-part and the bottom-part are assembled and
gives the result in Figure 11, Figure 12 and Figure 13 for the val-
ues: bandlengh=1.7, bandwidth=2.5, boxlengh=2.5, boxwidth=2.5,
boxheight=1.9.

34

Chapter 5

Future Work

5.1 Generating Data

5.1.1 Synthetic Data based on parametric design

The code above should be improved by parameterizing the number of fea-
tures as well as the curvature of the upper-part’s edges. Another code should
be added to construct the cap which will be assembled with the upper-part.
It will be also better if the curvature of the upper-part is controlled through
a parameter.

As a result, we will have a strong script for generating different kinds and
shapes of bottles with many other features. Then in the end, we can create
a fairly complete data set containing various bottles (images associated to
their 3D shapes).

5.2 Training Pixel2Mesh

5.2.1 Training set

The data set mentioned in the section before will be used to train the model
and to make it specialized in bottle reconstruction only. It is supposed to
give better results than the pre-trained model.

Training will take place in AWS [10] servers since it offers high level facilities
to train AI models.

35

5.2.2 Training the model using AWS ML

Typically, the process from conceptualizing to producing ML models is com-
plex and time consuming. Training the model requires handling large amounts
of data, choosing the best algorithm, managing compute capacity during
training, and then deploying the model in a production environment. Ama-
zon SageMaker alleviates this complexity by making it easier to build and
deploy ML models. Once the right algorithms and frameworks are picked
from the wide array of choices available, Amazon SageMaker manages all
the underlying infrastructure to train the model at petabyte scale and de-
ploy it to production. This will allow Digimind to train Pixel2Mesh on the
generated data in a secure environment without any memory or complexity
constraints.

36

Chapter 6

Conclusion

In conclusion, the internship was a useful experience. I have found out what
my strengths and weaknesses are. I gained new knowledge and skills and met
many new people. I achieved many of my learning goals, however for some
the conditions did not permit to achieve them as I wanted.

At last this internship has given me new insights and motivation to pursue a
career in Data Science & AI research. To prepare myself for my future career
I can improve several things: I can work on my communication skills so that
I am able to present and express myself more confidently. I could perform
certain tasks in research better if I had more experience in the research
methodologies and for that I tried to write this report in LATEX in a way to
make it the same way other thesis or research papers are made.

37

Acknowledgment

I cannot express enough thanks to the Digimind team for their continued sup-
port and encouragement: My supervisor Dr. Katharina Eissing, as well
as the founder Dr. Omar Fergani, the great Software Engineer Aimad
Harilla for our collaboration, and the manager Duygu Duener, who was in
charge for my trip to Berlin. I offer my sincere appreciation for the learning
opportunities provided within the team.

Finally, to my supportive parents and friends. Many thanks to Léa for her
help in reviewing the entire report. Your encouragements are much appreci-
ated and duly noted.

38

References

[1] ShapeNet Data Set: https://shapenet.org/

[2] Digimind Labs Web Site: https://digimindlabs.de/

[3] CY Tech Web Site: https://cytech.cyu.fr/en

[4] Pixel2Mesh Implementation: https://github.com/nywang16/Pixel2Mesh

[5] Pixel2Mesh: Generating3D Mesh Models from Single RGB Images

[6] BeautifulSoup Library: https://www.crummy.com/software/BeautifulSoup/bs4/doc/

[7] OpenCV Library: https://opencv.org/

[8] Pygalmesh Library: https://github.com/nschloe/pygalmesh

[9] CADQuery Library: https://cadquery.readthedocs.io/en/latest/

[10] Amazon Web Services - Machine Learning (AWS ML):
https://aws.amazon.com/machine-learning/?nc1=hls

39

	Objective
	Introduction
	The Startup: Digimind Labs
	Introduction of Company
	Activity field and goals
	Overview of Digimind's activity

	Motivation behind choosing Digimind for internship
	Career plan
	Teamwork
	Internship abroad

	Work Done
	Pixel2Mesh Algorithm
	Data and preprocessing
	Pixel2Mesh result

	Pygalmesh
	Pygalmesh library
	Implementation and results

	CADQuery Library
	Why CADQuery ?
	Implementation and results
	Construction blocks

	Future Work
	Generating Data
	Synthetic Data based on parametric design

	Training Pixel2Mesh
	Training set
	Training the model using AWS ML

	Conclusion
	Acknowledgements
	References

